gwas分析方法优点?
一、gwas分析方法优点?
全基因组关联分析,是指在人类全基因组范围内找出存在的序列变异,即单核苷酸多态性(SNP),从中筛选出与疾病相关的SNPs。
GWAS为人们打开了一扇通往研究复杂疾病的大门,将在患者全基因组范围内检测出的SNP位点与对照组进行比较,找出所有的变异等位基因频率,从而避免了像候选基因策略一样需要预先假设致病基因。GWAS一般采用非假说驱动。由于GWAS研究的各种研究设计方法以及遗传统计方法无法从根本上消除人群混杂、多重比较造成的假阳性,我们需要通过重复研究来保证遗传标记与疾病间的真关联。
二、gwas分析原理及流程?
名词解释和基本问题:
关联分析:就是AS的中文,全称是GWAS。应用基因组中数以百万计的单核苷酸多态;SNP为分子遗传标记,进行全基因组水平上的对照分析或相关性分析,通过比较发现影响复杂性状的基因变异的一种新策略。在全基因组范围内选择遗传变异进行基因分析,比较异常和对照组之间每个遗传变异及其频率的差异,统计分析每个变异与目标性状之间的关联性大小,选出最相关的遗传变异进行验证,并根据验证结果最终确认其与目标性状之间的相关性。
连锁不平衡:LD,P(AB)= P(A)*P(B)。不连锁就独立,如果不存在连锁不平衡——相互独立,随机组合,实际观察到的群体中单倍体基因型 A和B 同时出现的概率。P (AB) = D + P (A) * P (B) 。D是表示两位点间LD程度值。
曼哈顿图:在生物和统计学上,做频率统计、突变分布、GWAS关联分析的时候,我们经常会看到一些非常漂亮的manhattan plot,能够对候选位点的分布和数值一目了然。位点坐标和pvalue。map文件至少包含三列——染色体号,SNP名字,SNP物理位置。assoc文件包含SNP名字和pvalue。haploview即可画出。
SNP的本质属性是什么?广义上讲是变异:most common type of genetic variation,平级的还有indel、CNV、SV。Each SNP represents a difference in a single DNA building block, called a nucleotide. 狭义上讲是标记:biological markers,因为SNP是单碱基的,所以SNP又是一个位点,标记了染色体上的一个位置。大部分人的基因组,99%都是一模一样的,还有些SNP的位点,就是一些可变的位点,在人群中有差异。这些差异/标记可以用于疾病的分析,根据统计学原理,找出与疾病最相关的位点,从而确定某个疾病的risk allele。
三、机器学习包括?
机器学习
机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
四、什么是学习和机器学习?
机器学习(Machine Learning)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是人工智能的核心,是使计算机具有智能的根本途径。
学习,是指通过阅读、听讲、思考、研究、实践等途径获得知识和技能的过程。学习分为狭义与广义两种:狭义:通过阅读、听讲、研究、观察、理解、探索、实验、实践等手段获得知识或技能的过程,是一种使个体可以得到持续变化(知识和技能,方法与过程,情感与价值的改善和升华)的行为方式。例如:通过学校教育获得知识的过程。广义:是人在生活过程中,通过获得经验而产生的行为或行为潜能的相对持久的方式。次广义学习指人类的学习。
五、机器学习是从哪里学习?
机器学习是从数据中学习的。它利用算法和统计模型来分析数据,发现数据中的模式和规律,从而生成预测模型和决策模型。
机器学习有监督学习、无监督学习和强化学习等不同的学习方式,可以应用于各种不同的领域,如自然语言处理、计算机视觉、音频信号处理和金融等。
机器学习的数据来源可以是结构化数据和非结构化数据,如图像、文本、音频和视频等。
六、机器学习高校排名?
清华大学,北京大学,中国人民大学,复旦大学
七、机器学习作者?
《机器学习》是清华大学出版社出版发行的书籍,作者是周志华。
八、机器自我学习原理?
机器学习是人工智能的一个子集。这项技术的主要任务是指导计算机从数据中学习,然后利用经验来改善自身的性能,不需要进行明确的编程。
在机器学习中,算法会不断进行训练,从大型数据集中发现模式和相关性,然后根据数据分析结果做出最佳决策和预测。
机器学习应用具有自我演进能力,它们获得的数据越多,准确性会越高。
九、机器学习就业待遇?
机器学习是一个热门领域,就业待遇相对较好。根据不同地区和公司的情况,机器学习岗位的平均薪资可能在每年5万-20万美元之间。大公司如谷歌、亚马逊、微软等,在机器学习领域有较高的薪资水平。
此外,机器学习专业人员往往具有广泛的职业发展机会,可以在各种领域应用机器学习技术,如金融、医疗、制造等。因此,机器学习就业待遇相对较好,但具体情况还取决于个人的技能、经验和地区。
十、机器学习的分类?
机器学习是一个比较大的范畴,机器学习包括很多东西,如决策树分析,主成分分析,回归分析,支持向量机,神经网络,深度学习等。你说的流量分类应该是说采用机器学习里面的一些分类算法,如朴素贝叶斯算法,K-means算法(也叫K均值算法),EM算法(也叫期望值最大化算法)等聚类算法。