主页 > 机器学习 > 计算机小白如何开始机器学习的学习,有入门课程推荐吗?

计算机小白如何开始机器学习的学习,有入门课程推荐吗?

栏目: 作者: 时间:

一、计算机小白如何开始机器学习的学习,有入门课程推荐吗?

机器学习是一个很模糊且宽泛的话题,关于它的书籍、博客、视频课程也是非常多的,我认为如果希望做一些宏观的了解,看一些网上的文章就行。如果希望深入学习,个人建议还是系统的看看相关的书籍、视频课程,然后尽量动手实现一下,因为当你动手实现的时候你会对它的理解更加深刻。

机器学习可以从两个方向说起:学习算法和应用领域,如果把应用领域也囊括在内的话,那包含的学习内容就太多了,

  • 数据挖掘
  • 计算机视觉
  • 自然语言处理
  • 搜索引擎
  • ......

以上每个应用领域都能找到很多相关的书籍或者课程,因此就没必要把它们全部罗列出来了。

单从学习算法来说,它可以分为如下几个种类:

  • 监督学习
  • 无监督学习
  • 半监督学习
  • 增强学习

按研究阶段和研究内容综合来划分又可以这样进行分类:

  • 传统机器学习(后面称机器学习)
  • 深度学习

我就从以上这3个方向开始 介绍一下相关的优质学习资源。

机器学习

视频课程

《机器学习》-吴恩达

机器学习(Machine Learning)- 吴恩达(Andrew Ng)_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili

提及机器学习,入门课程当然少不了吴恩达的入门经典课程《机器学习》,虽然目前关于机器学习的教程层出不穷,但是绝大多数都是各教育机构为分取蛋糕而创作出的产物,难免良莠不齐,内容不严谨,所以尽管老掉牙,我还是会首推吴恩达的这门《机器学习课程》,

《机器学习与神经网络》-Geoffrey Hinton

Hinton机器学习与神经网络中文课程 - 网易云课堂

图灵奖得主、人工智能领域三位顶尖大牛之一,我想从事AI领域的应该对Hinton都不陌生,从他的文章中就可以看的出来,非常有深度,严谨,他的这门课程也保持了一贯作风。但是,这门课也有一个问题,就是语速相对较快,一遍要跟着理解英语,一遍要去理解他所阐述的知识,我觉得这还是一件挺吃力的事情。

《机器学习》-李宏毅

李宏毅机器学习2019(国语)_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili

我觉得对于英语水平有限的同学来说看一门英文的课程还是很吃力的,比如我,每当涉及到英语都会觉得头疼。如果你也一样,可以选择看一下李宏毅的《机器学习》,这门课也是一门机器学习的入门经典,目前已经更新到2019版,不仅内容详细,而且授课语言轻松风趣。

书籍

《机器学习》-周志华

这本书很适合机器学习入门,没有过多的公式推导,也没有晦涩难懂的词汇,理论与示例相结合,阐述非常详细。

《统计学习方法》-李航

和周志华老师的机器学习不同,《统计学习方法》这本书籍有更多的公式推导和理论证明,可以这样概括两者的区别:《机器学习》更偏重于算法原理,让你知道每个算法怎么实现的,步骤是什么。《统计学习方法》会深扒原理背后的理论支撑,这样有助于更加深入的理解机器学习算法,对后续深入研究会有很多好处,当然,随之而来的就是对于初学者看着满篇的公式也会让人觉得很头疼。

《机器学习实战》- Peter Harrington

就如同这本书的名称一样,它更加突出实战,它不过多的讨论算法的原理和优缺点,简单的介绍一下算法的流程步骤,然后接下来更多的篇幅就是围绕实战展开,会给出一个示例,然后逐步编程实现,这样有助于让自己发现学习理论过程中容易忽略的点,进一步加深对机器学习的理解,我认为这本书还是很有必要看一下的,毕竟仅仅学习理论知识难免会落入“纸上谈兵”的困境,实践才能出真知。

我个人建议可以用《机器学习》+《机器学习实战》的组合进行学习,《统计学习方法》可以在学习一段时间机器学习之后,希望更加深入了解机器学习时抽空好好看一下,推导一下里面的公式。

总结

以上课程和书籍都有一个共性,就是直接从神经网络、感知机、贝叶斯、KNN这些机器学习算法开始讲起,而机器学习是一门交叉学科,它涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。如果希望在机器学习领域做更加深入的研究,我认为还需要把这些相关的知识学习一下。当然,如果日常工作是强业务类型,更加偏重于机器学习的应用而不是偏重模型调优,我觉得上述这些课程和书籍已经够用了。

深度学习

视频课程

书籍

  • 《深度学习》-Goodfellow、Bengio
  • 《Python深度学习》-弗朗索瓦·肖莱
  • 《深度学习入门》-斋藤康毅

作品精选

Jackpop:目录 | 精选CV、Python等系列教程

Jackpop:大数据处理 | Spark&HDFS集群配置及基本使用

Jackpop:实用工具 | 推荐3款令人惊艳的截图工具

Jackpop:强烈推荐 | 这将会成为一个优质的github项目

Jackpop:C盘快满了,该如何清理?

Jackpop:学习pytorch该怎么提高自己的代码能力?

Jackpop:2019 年双十一有哪些值得购买的东西?

二、机器学习是从哪里学习?

机器学习是从数据中学习的。它利用算法和统计模型来分析数据,发现数据中的模式和规律,从而生成预测模型和决策模型。

机器学习有监督学习、无监督学习和强化学习等不同的学习方式,可以应用于各种不同的领域,如自然语言处理、计算机视觉、音频信号处理和金融等。

机器学习的数据来源可以是结构化数据和非结构化数据,如图像、文本、音频和视频等。

三、什么是学习和机器学习?

机器学习(Machine Learning)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是人工智能的核心,是使计算机具有智能的根本途径。

学习,是指通过阅读、听讲、思考、研究、实践等途径获得知识和技能的过程。学习分为狭义与广义两种:狭义:通过阅读、听讲、研究、观察、理解、探索、实验、实践等手段获得知识或技能的过程,是一种使个体可以得到持续变化(知识和技能,方法与过程,情感与价值的改善和升华)的行为方式。例如:通过学校教育获得知识的过程。广义:是人在生活过程中,通过获得经验而产生的行为或行为潜能的相对持久的方式。次广义学习指人类的学习。

四、机器学习的分类?

机器学习是一个比较大的范畴,机器学习包括很多东西,如决策树分析,主成分分析,回归分析,支持向量机,神经网络,深度学习等。你说的流量分类应该是说采用机器学习里面的一些分类算法,如朴素贝叶斯算法,K-means算法(也叫K均值算法),EM算法(也叫期望值最大化算法)等聚类算法。

五、机器学习包括?

机器学习

机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

六、机器学习算法和深度学习的区别?

答:机器学习算法和深度学习的区别:

1、应用场景

机器学习在指纹识别、特征物体检测等领域的应用基本达到了商业化的要求。

深度学习主要应用于文字识别、人脸技术、语义分析、智能监控等领域。目前在智能硬件、教育、医疗等行业也在快速布局。

2、所需数据量

机器学习能够适应各种数据量,特别是数据量较小的场景。如果数据量迅速增加,那么深度学习的效果将更加突出,这是因为深度学习算法需要大量数据才能完美理解。

3、执行时间

执行时间是指训练算法所需要的时间量。一般来说,深度学习算法需要大量时间进行训练。这是因为该算法包含有很多参数,因此训练它们需要比平时更长的时间。相对而言,机器学习算法的执行时间更少。

七、bert属于深度学习还是机器学习?

bert属于深度学习,用到了12层transformer神经网络,参数上亿。

八、机器学习的监督学习和无监督学习的区别?

机器学习的监督学习和无监督学习是两种不同的学习方式。1. 监督学习是指在训练过程中,给定了一组有标签的数据作为输入,模型通过学习这些标签来预测未知数据的标签。监督学习的目标是建立一个能够准确预测输出的模型。例如,给定一组带有房屋面积和价格的数据,监督学习的任务是通过学习这些数据来预测未知房屋的价格。2. 无监督学习是指在训练过程中,没有给定标签的数据作为输入,模型通过学习数据之间的关系和结构来发现隐藏的模式和规律。无监督学习的目标是对数据进行聚类、降维或生成新的特征表示。例如,给定一组顾客购买记录的数据,无监督学习的任务是通过学习数据之间的相似性来将顾客分成不同的群组。监督学习和无监督学习的区别在于是否有标签信息。监督学习需要有标签的数据来进行训练和预测,而无监督学习则不需要标签信息,只需要学习数据本身的特征和结构。监督学习更适用于预测和分类问题,而无监督学习更适用于聚类和降维等问题。总结:监督学习和无监督学习是机器学习中两种不同的学习方式。监督学习通过学习有标签的数据来预测未知数据的标签,而无监督学习通过学习数据之间的关系和结构来发现隐藏的模式和规律。

九、强化学习与机器学习模型的不同

强化学习与机器学习模型的最大不同在于,强化学习是一种通过与环境交互来学习最优行为策略的方法,其目标是使智能体在不断尝试中获得最大的奖励。

而机器学习模型则是从已有的数据中学习规律,根据输入数据预测输出结果,没有与环境的交互。

强化学习需要智能体不断地与环境交互,通过试错来学习最优策略,而机器学习模型则是通过数据训练来学习规律,预测输出。

十、机器学习的哲学本质?

机器学习的本质,就在于建立了(原始数据——认知)之间的直接映射,跳出了“知识”的束缚。

机器学习是一种从数据当中发现复杂规律,并且利用规律对未来时刻、未知状况进行预测和判定的方法。是当下被认为最有可能实现人工智能的方法,随着大数据+机器学习的组合,使得机器学习算法从数据中发现的规律越来越普适。