主页 > 机器人 > 人工智能与机器人的结合的利与弊?

人工智能与机器人的结合的利与弊?

栏目: 作者: 时间:

一、人工智能与机器人的结合的利与弊?

利是人类的到了便利,弊是人可能会被机器终结

二、人工智能和VR结合的产物?

VR虚拟现实最重要的是沉浸感和交互性,VR虚拟世界中的角色,如果想要实现交互性,那么人工智能一定会和VR结合的,这样才能让VR虚拟世界显得更真实。

三、如果atlas机器人(波士顿动力)和chatGPT(人工智能)结合会发生什么?

目前谷歌和微软已经做了一些相关的工作,但更侧重于task decomposition,亦即将高层指令分解成一系列预定义好的低层指令下发给下游模型进行执行,这点其他答主的回答里也有提及。

但于我而言,如果想让机器人真正实现革命性的进展——亦即使机器人具有更泛化的应用场景、更高超的运动技巧、更敏捷的反应力,需要克服的可能是“端到端控制”这个大难题:作为人类,我们是不会刻意地将每一个动作都形式化的,否则应对现实世界中各式各样场景所需的“动作库”将会过于庞大。端到端的建模一般来说是LLM的优势所在,但在机器人领域却恰恰难以简单地实现端到端。在我看来,起码有以下四个紧密耦合的挑战:

高可行性(feasibility)的动作生成

目前的业界学界主流还是偏向于在底层使用LQR之流的传统控制器,因为它们拥有良好的数学形式,可以明确地把动力学约束写进去,从而保障产生的控制序列一定是合理的,不会出现一些匪夷所思的控制序列(例如要求机器人把左脚趾头抬高到脑门上)。相比之下,生成式模型就时常给出这一类的控制序列,因为动力学模型真的很难学习,而且往往也难以用所谓“直觉”进行推断。设想一下——你能够猜测一个塑料水杯从桌子上落到地面后经过几次弹跳最终会落到哪里吗?

高鲁棒性要求

这个挑战牵涉到另一个在机器人领域臭名昭著的问题,Sim2Real。由于现实世界中存在的种种不确定性(传感器噪音、驱动器误差、系统通信延迟),用于建模和训练模型的参数和真实的参数往往会有一定的出入,而由于复杂动力学系统的高度混沌性,在将模型在两个动力学系统之间迁移时可能会出现“差之毫厘,失之千里”的现象。

目前常用的解决方案有几种。其一是进行更加精确的建模(比如将噪声也建模在内),但这种方法与LLM的路数如何结合,可能需要进一步斟酌。其二是在数据中注入噪声(亦即data augmentation),但对于LLM+Dynamic system这一特定的应用领域,需要多大规模的数据泛化,是不得而知的。

实时性要求

相对而言是一个很容易想到的瓶颈问题了,机器人系统的具有相对较高的控制频率要求,是目前的LLM暂时满足不了的。不过这个问题也许可以随着硬件系统的进化而解决。

不由得想起来曾几何时,小规模的神经网络模型还因为具有相对于传统迭代式优化器更高的运行效率而被视为一种提高实时性的方案(笑

数据集要求

模型和数据是AI的两条支柱,ChatGPT的出现离不开前人贡献的大规模语料数据集,OpenAI自己也投入了大量资金来生产训练所需的数据。相比之下,足式机器人领域缺乏完善的大规模公开数据集,在现实世界中收集数据的成本也远比其它大部分AI应用要昂贵。在相对廉价的虚拟环境中收集数据,便又会面临之前提到的Sim2Real问题。

四、人工智能和财务相结合的专业?

财务管理软件、ERP等等需要智能化发展

五、人工智能和机器人区别?

机器人,能够完成某些指令和任务,即使是被动的被操控的,并非智能的,仍然是机器人。机器人主要是在外形态,硬件上的体现。

人工智能则是软件上的,体现在内在的智慧和学习上,能够自主的去完成所分配的任务,且在任务完成中可以自我完善和学习,不断的自我提升,具备相当程度的自主能动性。

六、ai人工智能和农业机械的结合?

首先要说人工智能以后是机器人的标配,没有人工智能的只能称之机器。

1而在农业上我一直以为人工智能机器人的应用目标就是农业自动智能化。人工智能检测分析从天气到士地的营养成分再到智能调节农作物的生产,都是需要人工智能去做的。

2随着人工智能机器人的应用,人只要指挥就可以了,指挥智能无人机、智能无人农业机械甚至人工智能指挥智能农业机械会成为标配。

3智能粮仓会根据各种传感器的指标综合调节粮仓的温度、湿度等变化,粮仓的智能传输系统会自动把粮食装车。

4可以说人工智能对农业的发展非常大,智能农业发展的透明化会更好的让人们追溯农产品的源头,智能标签包含了农作物的全部信息。

七、移动互联网和人工智能的结合?

 随着移动互联网的发展进入新的方向,移动互联网中的智能化已经成为新的发展趋势和主要需求。智能化需求目前主要体现在两个方面。

一方面是促进新的智能化应用,如自动驾驶汽车,虚拟现实和增强现实应用等,拓宽移动应用领域为用户提供更多应用选择。另一方面是基于目前已有的大量应用数据进行智能化分析,在现有移动应用的基础上分析用户需求,明晰用户目标,提供用户感受,让用户在固有移动应用领域体验提升。

八、作文培训怎么结合人工智能?

作文培训的时候可以结合人工智能的例子,通过电子设备等工具来实行

九、人工智能如何与康复结合?

人工智能与康复结合可以通过以下方式实现:1. 个性化定制:利用人工智能技术,根据每个人的康复需求和目标,为其制定个性化的康复计划。这些计划可以包括特定的训练科目、难度等级和目标达成时间等。2. 虚拟现实训练:人工智能可以通过虚拟现实技术为康复者提供模拟的环境和情境,使其在安全的环境中进行各种训练,如平衡、步态、抓握等。3. 在线监测与评估:人工智能可以通过实时监测和评估康复者的身体状况、运动数据等,为其提供及时的反馈和建议,帮助其更好地进行康复训练。4. 数据分析与优化:人工智能可以对康复者的数据进行深入分析,为其提供可视化的数据报告,帮助其更好地了解自己的康复进程和效果,同时为康复治疗团队提供优化康复计划的数据支持。总之,人工智能与康复结合有助于提高康复效率和质量,为康复者提供更好的康复服务。

十、人工智能etf和机器人etf区别?

人工智能ETF和机器人ETF都是投资人工智能和机器人技术的ETF,但它们的投资策略和重点不同。

人工智能ETF主要是通过投资在人工智能领域中的公司股票,包括研发人工智能技术、提供人工智能相关服务的公司等。人工智能ETF的目标是获得人工智能领域的收益,包括机器学习、自然语言处理、计算机视觉等领域。

机器人ETF则是投资机器人技术领域中的公司股票。它们可能会投资于生产、销售机器人和机器人零部件的公司、开发机器人软件和控制系统的公司等。机器人ETF的目标是从机器人技术和自动化趋势中获得收益,包括制造、医疗保健、军事等领域。

因此,人工智能ETF的投资重点是人工智能技术,而机器人ETF的投资重点是机器人技术。虽然两者都处于技术前沿,并有许多共同点,但它们的投资策略和市场表现可能会有所不同