主页 > 大数据 > 属于大数据关键技术

属于大数据关键技术

栏目: 作者: 时间:

一、属于大数据关键技术

属于大数据关键技术

大数据时代已经来临,数据成为了企业发展的关键资源。为了更好地利用数据,我们有必要了解属于大数据的关键技术。这些技术不仅能够帮助企业更好地挖掘数据价值,而且还能提高数据处理效率,为企业带来更多的商业机会。

分布式存储技术

分布式存储技术是大数据存储的核心技术之一。它通过将数据分布在多个节点上,实现数据的分布式存储,从而提高了数据的安全性和可靠性。同时,分布式存储技术还能够支持大规模数据的存储,满足企业对数据存储的需求。

大数据分析技术

大数据分析技术是利用数据挖掘、机器学习和统计学等方法对大规模数据进行处理、分析和预测的技术。通过大数据分析,企业可以发现数据背后的规律和趋势,从而更好地制定战略和决策。

实时数据处理技术

实时数据处理技术是针对大规模实时数据流进行处理的技术。它能够快速处理数据流,实时分析数据,为企业提供实时的业务决策支持。实时数据处理技术是应对快速变化的市场环境的关键技术之一。

人工智能技术

人工智能技术在大数据领域的应用越来越广泛。通过机器学习、深度学习等技术,人工智能技术能够从海量数据中提取有价值的信息,提高决策的智能化水平。人工智能技术是大数据领域的关键技术之一,也是未来大数据发展的趋势。

总之,属于大数据的关键技术还有很多,如云计算、数据安全、数据可视化等。这些技术不仅能够帮助企业更好地挖掘数据价值,而且还能提高数据处理效率,为企业带来更多的商业机会。对于企业来说,掌握这些关键技术是必不可少的。

二、()属于大数据关键技术

()属于大数据关键技术在当今信息时代,大数据已经成为企业重要的资产之一。随着数据量的不断增加,企业对大数据技术的需求也越来越迫切。而在众多大数据技术中,()扮演着至关重要的角色。

()属于大数据关键技术的定义

在大数据应用的背景下,()是指能够帮助企业从海量数据中提取、分析和利用有价值信息的技术和方法。通过(),企业可以高效地处理大数据,从而获得更深层次的洞察,并为业务决策提供有力支持。

()属于大数据关键技术的核心价值

在当前竞争激烈的营商环境中,()对企业的意义不言而喻。首先,通过(),企业可以更好地了解消费者需求,优化产品设计和营销策略,提高客户满意度和忠诚度。

其次,()还可以帮助企业发现行业发展趋势,预测市场走向,从而制定更具前瞻性的战略规划。此外,()也能够帮助企业发现潜在风险,规避危机,保护企业利益。

应用()属于大数据关键技术的行业与场景

各行各业都在积极探索如何应用()来推动企业发展。在金融行业,()被用于风险管理、反欺诈、投资决策等方面;在电商领域,()被用于个性化推荐、精准营销等场景;在医疗健康领域,()被用于疾病预测、医疗资源优化等用途。

除此之外,()还广泛应用于智能制造、交通物流、城市管理等领域。可以说,任何希望从数据中获益的行业,都离不开()的支持。

未来()属于大数据关键技术的发展趋势

随着技术的不断创新和进步,()的发展也在不断演进。未来,()将更加智能化、自动化,能够更准确地分析数据,发现隐藏的规律,并快速响应业务需求。

同时,()也将更加注重隐私保护和数据安全,采用更加严谨的算法和机制,保障数据的合法使用和安全传输。

结语

综上所述,()不仅是大数据技术的重要组成部分,更是推动企业数字化转型和创新发展的关键引擎。只有不断深化应用(),不断提升技术能力,企业才能在激烈的竞争中立于不败之地,实现长期稳健的发展。

三、大数据关键技术有哪些?

大数据关键技术涵盖数据存储、处理、应用等多方面的技术,根据大数据的处理过程,可将其分为大数据采集、大数据预处理、大数据存储及管理、大数据处理、大数据分析及挖掘、大数据展示等。

四、分布式文件系统属于大数据关键技术吗?

Hadoop最底层是HDFS,也就是Hadoop文件系统,这个是分布式文件系统,由多台设备提供统一的存储空间,而用户感觉不到多台设备,只看到一个统一的存储空间,这也是云存储技术的基础。属于大数据关键技术。

五、多媒体的关键技术是数据?

多媒体计算机的关键技术是解决视频、音频信号的获取和处理,包括多媒体数据的压缩编码和解码技术以及多媒体数据的输出技术。主要应用于通信、娱乐和计算机的融合,为解决电视数字化及高清晰度提供了切实可行的方案。多媒体计算机可制作DVD及影视音响设备,以及制作多媒体家庭网关。

六、传统数据采集的关键技术有哪些?

大数据处理关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。

一、大数据采集技术

数据是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得的各种类型的结构化、半结构化(或称之为弱结构化)及非结构化的海量数据,是大数据知识服务模型的根本。

二、大数据预处理技术

主要完成对已接收数据的辨析、抽取、清洗等操作。1)抽取:因获取的数据可能具有多种结构和类型,数据抽取过程可以帮助我们将这些复杂的数据转化为单一的或者便于处理的构型,以达到快速分析处理的目的。2)清洗:对于大数据,并不全是有价值的,有些数据并不是我们所关心的内容,而另一些数据则是完全错误的干扰项,因此要对数据通过过滤“去噪”从而提取出有效数据。

三、大数据存储及管理技术

大数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。重点解决复杂结构化、半结构化和非结构化大数据管理与处理技术。主要解决大数据的可存储、可表示、可处理、可靠性及有效传输等几个关键问题。

四、大数据分析及挖掘技术

大数据分析技术。改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。

六、大数据展现与应用技术

大数据技术能够将隐藏于海量数据中的信息和知识挖掘出来,为人类的社会经济活动提供依据,从而提高各个领域的运行效率,大大提高整个社会经济的集约化程度。在我国,大数据将重点应用于以下三大领域:商业智能、政府决策、公共服务。

七、地理大数据分析的关键技术?

大数据技术是从各种类型的数据中快速获取有价值信息的技术。大数据领域出现了大量的新技术,它们已经成为大数据收集、存储、处理和呈现的有力武器。大数据处理的关键技术一般包括大数据收集、大数据预处理、大数据存储和管理、分析和挖掘、大数据收集、大数据预处理、大数据存储和管理、大数据的表示和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。

八、gps属于什么的关键技术?

GPS技术是实现物联网的核心技术

“物联网就是物物相连的互联网”。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信。

因此,物联网的定义是通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网相连接,进行信息交换和通信,以实现对物品的智能化识别、定位、跟踪、监控和管理的一种网络。

九、高级数据库,数据仓库有哪些关键技术?

一直想整理一下这块内容,既然是漫谈,就想起什么说什么吧。我一直是在互联网行业,就以互联网行业来说。先大概列一下互联网行业数据仓库、数据平台的用途:

整合公司所有业务数据,建立统一的数据中心;

提供各种报表,有给高层的,有给各个业务的;

为网站运营提供运营上的数据支持,就是通过数据,让运营及时了解网站和产品的运营效果;

为各个业务提供线上或线下的数据支持,成为公司统一的数据交换与提供平台;

分析用户行为数据,通过数据挖掘来降低投入成本,提高投入效果;比如广告定向精准投放、用户个性化推荐等;

开发数据产品,直接或间接为公司盈利;

建设开放数据平台,开放公司数据;

。。。。。。

上面列出的内容看上去和传统行业数据仓库用途差不多,并且都要求数据仓库/数据平台有很好的稳定性、可靠性;但在互联网行业,除了数据量大之外,越来越多的业务要求时效性,甚至很多是要求实时的 ,另外,互联网行业的业务变化非常快,不可能像传统行业一样,可以使用自顶向下的方法建立数据仓库,一劳永逸,它要求新的业务很快能融入数据仓库中来,老的下线的业务,能很方便的从现有的数据仓库中下线;

其实,互联网行业的数据仓库就是所谓的敏捷数据仓库,不但要求能快速的响应数据,也要求能快速的响应业务;

建设敏捷数据仓库,除了对架构技术上的要求之外,还有一个很重要的方面,就是数据建模,如果一上来就想着建立一套能兼容所有数据和业务的数据模型,那就又回到传统数据仓库的建设上了,很难满足对业务变化的快速响应。应对这种情况,一般是先将核心的持久化的业务进行深度建模(比如:基于网站日志建立的网站统计分析模型和用户浏览轨迹模型;基于公司核心用户数据建立的用户模型),其它的业务一般都采用维度+宽表的方式来建立数据模型。这块是后话。

整体架构下面的图是我们目前使用的数据平台架构图,其实大多公司应该都差不多:

逻辑上,一般都有数据采集层、数据存储与分析层、数据共享层、数据应用层。可能叫法有所不同,本质上的角色都大同小异。

我们从下往上看:

数据采集数据采集层的任务就是把数据从各种数据源中采集和存储到数据存储上,期间有可能会做一些简单的清洗。

数据源的种类比较多:

网站日志:

作为互联网行业,网站日志占的份额最大,网站日志存储在多台网站日志服务器上,

一般是在每台网站日志服务器上部署flume agent,实时的收集网站日志并存储到HDFS上;

业务数据库:

业务数据库的种类也是多种多样,有Mysql、Oracle、SqlServer等,这时候,我们迫切的需要一种能从各种数据库中将数据同步到HDFS上的工具,Sqoop是一种,但是Sqoop太过繁重,而且不管数据量大小,都需要启动MapReduce来执行,而且需要Hadoop集群的每台机器都能访问业务数据库;应对此场景,淘宝开源的DataX,是一个很好的解决方案(可参考文章 《异构数据源海量数据交换工具-Taobao DataX 下载和使用》),有资源的话,可以基于DataX之上做二次开发,就能非常好的解决,我们目前使用的DataHub也是。

当然,Flume通过配置与开发,也可以实时的从数据库中同步数据到HDFS

来自于Ftp/Http的数据源:

有可能一些合作伙伴提供的数据,需要通过Ftp/Http等定时获取,DataX也可以满足该需求;

其他数据源:

比如一些手工录入的数据,只需要提供一个接口或小程序,即可完成

数据存储与分析毋庸置疑,HDFS是大数据环境下数据仓库/数据平台最完美的数据存储解决方案。

离线数据分析与计算,也就是对实时性要求不高的部分,在我看来,Hive还是首当其冲的选择,丰富的数据类型、内置函数;压缩比非常高的ORC文件存储格式;非常方便的SQL支持,使得Hive在基于结构化数据上的统计分析远远比MapReduce要高效的多,一句SQL可以完成的需求,开发MR可能需要上百行代码;

当然,使用Hadoop框架自然而然也提供了MapReduce接口,如果真的很乐意开发Java,或者对SQL不熟,那么也可以使用MapReduce来做分析与计算;Spark是这两年非常火的,经过实践,它的性能的确比MapReduce要好很多,而且和Hive、Yarn结合的越来越好,因此,必须支持使用Spark和SparkSQL来做分析和计算。因为已经有Hadoop Yarn,使用Spark其实是非常容易的,不用单独部署Spark集群,关于Spark On Yarn的相关文章,可参考:《Spark On Yarn系列文章》

实时计算部分,后面单独说。

数据共享这里的数据共享,其实指的是前面数据分析与计算后的结果存放的地方,其实就是关系型数据库和NOSQL数据库;

前面使用Hive、MR、Spark、SparkSQL分析和计算的结果,还是在HDFS上,但大多业务和应用不可能直接从HDFS上获取数据,那么就需要一个数据共享的地方,使得各业务和产品能方便的获取数据; 和数据采集层到HDFS刚好相反,这里需要一个从HDFS将数据同步至其他目标数据源的工具,同样,DataX也可以满足。

另外,一些实时计算的结果数据可能由实时计算模块直接写入数据共享。

数据应用

业务产品

业务产品所使用的数据,已经存在于数据共享层,他们直接从数据共享层访问即可;

报表

同业务产品,报表所使用的数据,一般也是已经统计汇总好的,存放于数据共享层;

即席查询

即席查询的用户有很多,有可能是数据开发人员、网站和产品运营人员、数据分析人员、甚至是部门老大,他们都有即席查询数据的需求;

这种即席查询通常是现有的报表和数据共享层的数据并不能满足他们的需求,需要从数据存储层直接查询。

即席查询一般是通过SQL完成,最大的难度在于响应速度上,使用Hive有点慢,目前我的解决方案是SparkSQL,它的响应速度较Hive快很多,而且能很好的与Hive兼容。

当然,你也可以使用Impala,如果不在乎平台中再多一个框架的话。

OLAP

目前,很多的OLAP工具不能很好的支持从HDFS上直接获取数据,都是通过将需要的数据同步到关系型数据库中做OLAP,但如果数据量巨大的话,关系型数据库显然不行;

这时候,需要做相应的开发,从HDFS或者HBase中获取数据,完成OLAP的功能;

比如:根据用户在界面上选择的不定的维度和指标,通过开发接口,从HBase中获取数据来展示。

其它数据接口

这种接口有通用的,有定制的。比如:一个从Redis中获取用户属性的接口是通用的,所有的业务都可以调用这个接口来获取用户属性。

实时计算现在业务对数据仓库实时性的需求越来越多,比如:实时的了解网站的整体流量;实时的获取一个广告的曝光和点击;在海量数据下,依靠传统数据库和传统实现方法基本完成不了,需要的是一种分布式的、高吞吐量的、延时低的、高可靠的实时计算框架;Storm在这块是比较成熟了,但我选择Spark Streaming,原因很简单,不想多引入一个框架到平台中,另外,Spark Streaming比Storm延时性高那么一点点,那对于我们的需要可以忽略。

我们目前使用Spark Streaming实现了实时的网站流量统计、实时的广告效果统计两块功能。

做法也很简单,由Flume在前端日志服务器上收集网站日志和广告日志,实时的发送给Spark Streaming,由Spark Streaming完成统计,将数据存储至Redis,业务通过访问Redis实时获取。

任务调度与监控在数据仓库/数据平台中,有各种各样非常多的程序和任务,比如:数据采集任务、数据同步任务、数据分析任务等;

这些任务除了定时调度,还存在非常复杂的任务依赖关系,比如:数据分析任务必须等相应的数据采集任务完成后才能开始;数据同步任务需要等数据分析任务完成后才能开始; 这就需要一个非常完善的任务调度与监控系统,它作为数据仓库/数据平台的中枢,负责调度和监控所有任务的分配与运行。

前面有写过文章,《大数据平台中的任务调度与监控》,这里不再累赘。

总结在我看来架构并不是技术越多越新越好,而是在可以满足需求的情况下,越简单越稳定越好。目前在我们的数据平台中,开发更多的是关注业务,而不是技术,他们把业务和需求搞清楚了,基本上只需要做简单的SQL开发,然后配置到调度系统就可以了,如果任务异常,会收到告警。这样,可以使更多的资源专注于业务之上。

十、室内甲醛数据多少属于超标?甲醛的危害大吗?

1.中华人民共和国国家标准《居室空气中甲醛的卫生标准》规定:居室空气中甲醛的最高容许浓度为0.08毫克/立方米。2.中华人民共和国国家标准《实木复合地板》规定:A类实木复合地板甲醛释放量小于和等于9毫克/100克;B类实木复合地板甲醛释放量等于9毫克—40毫克/100克。3.《国家环境标志产品技术要求——人造木质板材》规定:人造板材中甲醛释放量应小于0.20毫克/立方米;木地板中甲醛释放量应小于0.12毫克/立方米

以上就是甲醛所应达到的安全浓度,在室内密闭关窗12小时,它的甲醛浓度不能高于0.01,如果甲醛含量超标,会对人体产生极大的危害。

长期呆在甲醛超标的环境里,会导致身体的许多机能出现各种问题。比如说咳嗽、头晕、乏力、呼吸不畅、免疫系统被攻击、加重过敏反应、增加癌变几率等等。

就像前阵时间央视的报导,甲醛还会导致白血病,会加重白血病的病发几率。往往很多人对甲醛还有一个误解,认为新房装修完毕,通风一段时间甲醛含量就会大大降低了,其实不然,甲醛大面积的通风只能使墙体和地板上的气味散掉一些,如果说要除尽甲醛,那恐怕是不大可能的。

降低甲醛浓度的措施有:

1.开窗通风,不要持续性通风,要等乳胶漆干透之后再进行通风

2.绿植(作用不大,摆几盆绿萝、常春藤、吊兰就差不多了)

3.新风系统(成本较高,一般在1—10万左右)

4.市面上的各种净化器、喷剂、清除剂之类的,只能对除甲醛起到辅助作用,但也有一定效果。

5.加湿器、热空调,甲醛在高温高湿的环境下极易挥发,因此加重环境的湿气,提高周遭的温度,对于甲醛的挥发有积极作用。

6.炭包(可以放在衣柜、衣橱、抽屉等角落,对于甲醛有一定的吸附能力

7.光触媒(化学吸附方法,建议请教专业人士)

如果说预算充足又不想自己除甲醛的话,可以请专门的治理甲醛公司来做,但也要注意挑选和甄别。同时,预算比较高的还有新风系统,在1—10万左右。

如果说预算有限,那就建议通风加工业风扇才是yyds