目前大数据分析的发展前景如何?
推荐文章
一、目前大数据分析的发展前景如何?
我在一家大型制造企业从事了7年的数据分析工作,获得信息系统项目管理师(高级职称),担任过4个集团级数据项目的项目经理。作为偏业务的高级数据分析师,我对大数据行业的发展前景,总结下来就是:前景是光明的,但门槛会越来越高。
1.大数据是风口
数据分析是业务思维和数据处理能力的完美融合,从数据中提炼规律、洞察问题、捕捉机遇,为决策者提供数据支持。从国家的重视程度和行业的需求程度看,大数据行业都是风口。
(1)国家政策支持
先分享个真实故事:我有一个朋友,坐标北京,平时爱好研究房地产。工作3年在郊区买了两套房,工作7年置换成北三环的两套房,工作10年再次换房,在中关村买了一套顶层复式,在家里的露台可以看见海淀最好的小学。这十年,是2006年到2016年,房地产飞速发展的十年。
这就是风口对普通人的影响。而风口,离不开国家政策的支持。2021年十四五规划中将数字经济独立作为一章,可见国家对这个产业的重视。
(2)行业需求巨大
大数据本质是一种技术,未来的趋势是从互联网、金融、电信等数据资源基础较好的领域逐步向数字政府、智慧城市、智能制造等领域拓展,为社会、为企业赋能创造实打实的价值。
以制造业为例,大数据赋能企业的方向几乎可以覆盖全价值链:
①研发端:产品规划、产品全生命周期跟踪。②市场端:用户画像、精准营销、舆情监控。③制造端:最具代表的就是智能工厂。围绕着降本增效的目标,实现设备开机率提升、设备运行质量监控、生产效率提升、能源监控。比如工厂通过分析每日用水量,发现一处不易察觉的水管漏水。④供应链端:实现供应商主机厂一体化,优化供应链库存、优化运输路线。 ⑤后市场端:保客营销、车联网应用。
大数据赋能过程中势必出现巨大的人才缺口,特别是电商、金融、电信、制造、运输、车联网等行业,想了解更多大数据行业、特别是数据分析岗位信息的小伙伴,不妨看看下面这个直播,带你解锁数据分析职场大全。
2.大数据分析的就业覆盖面广
大数据分析岗位既有其专业性,又有很多可以横向通用的地方,因此就业覆盖面广、入行门槛低,无论技术还是业务领域都可以深耕。
(1)两种赛道:业务岗、技术岗
业务领域:在业务部门,包括根据业务需求进行的数据获取、数据清洗、数据解读、数据汇报等,对外输出多以PPT、Excel的形式。常用工具:Excel、PPT、SQL、统计学、python/R/ SPSS、思维导图等。
技术领域:在IT部门,包括数据抓取、数据清洗、数据仓库、数据算法、BI建设等。对外输出多为代码、数据库或网页,常用工具:SQL、数据库、Python、Excel、机器学习算法等。
无论在哪个赛道,如果想持续深耕,最终都需要同时具备业务和技术知识,也就是说高阶数据分析是复合人才。常有的岗位包括数据产品经理、商业分析、数据咨询等。
(2)三个发展阶段
从“要我做”到“我要做”的能力提升和思维转变,数据分析岗位可以分为三个阶段。
初级:按部就班,机械地完成日常工作,领导让作什么就只做什么。
中级:未雨绸缪,解读数据,主动发现风险、提出优化思路。有病治病(发现问题提出解决措施)、无病防身(发现风险及时补上漏洞)。
高级:引领开拓,全局视角统筹规划,搭建完整架构,必要时从数据角度参与公司的顶层设计。
业务赛道的数据分析岗位,成长阶段、工作类型、以及各阶段需要的业务能力做了整理,如图所示:
3.未来对大数据分析师的要求更高
大数据赋能企业的过程中会遇到很多技术和业务上的问题,因此未来对大数据从业人员的门槛也会越来越高。
(1)大数据分析赋能行业时存在的问题
我做数据分析期间,逐步牵头实现了所负责业务模块的数据管理由手工转为线上信息化,但说实话企业数据管理工作才刚刚起步,任重道远。通过与同行沟通,我们一致认为存在的问题有:
①企业对数据的运用浮于表面:很多项目雷声大雨点小,到了数据运用环节往往不了了之,仍然以人工统计、修订、决策为主。
②技术人才短缺:基础软硬件、开源框架等关键领域的技术储备仍然有差距,技术部门大多偏管理,实际IT技术多为外包,外包公司水平层次不齐。
③复合型人才短缺:同时懂技术又懂管理的人很少,很容易各说各话,无法按期完成任务后互相甩锅。
(2)成为数据分析师需要具备哪些能力
①熟练掌握数据分析工具
数据分析的常用软件包括Excel、PPT、SQL、统计学、Python/R/ SPSS、思维导图等,如果精力允许的话,还可以了解下AI,未来同质化的数据处理工作会逐步被AI取代。
我常用的是Excel。Excel的功能很强大,比如求和,除了基础求和,实际还会使用分类求和、筛选求和、加权求和、带公式求和等。此外,要想胜任数据清洗、初步数据解读工作,还需要掌握筛选、分列、转换格式、去重、透视、数据有效性、生成图表等。
Excel入门容易,精通很难。很多人都说自己会excel,但150万的数据量,有人花1天处理完,有人花1周也没处理完,会与会也是不同的,方法不同,效率差异很大。感兴趣的小伙伴可以免费领取资料包,技能+实战,带你玩转Excel。
②了解数据分析的思路
以统计报表为例,传统输出报表的步骤:设计表格——找相关方填数——汇总评审后交付。报表表头固化,如变化需重新开发。
数据分析师输出报表的步骤:根据报表需求后,先分析报表涉及的数据字段——明确数据来源——拿到原始的底层数据明细——数据清洗,这个过程也是对底层数据进行评审的过程,从中可以发现很多业务流程bug——整理出报表所需的数据明细表——透视自动生成动态报表。业务需求发生变化时,只要拿到的底层数据不变,可以快读进行动态调整。
③掌握业务知识
数据分析的本质通过高效的技术手段解决业务问题,举一个我的亲身经历:
公司开发智能驾驶舱,到了数据验证阶段,牵头部门发现一组数据和线下报表始终差异巨大,很多同事筛查无果后找到我。
我拿到报表后,问了三个问题:问题1:统计方式是求和还是计数;问题2:统计范围包括哪些业务;问题3:统计范围包括哪些产品。
三个问题解决之后,线上线下数据准确率由50%提升到了98%。试想一下,如果我不懂这块业务,会再多的分析工具也没办法解决问题。
④建立面向客户的思维模式
我见过很多甩锅式的数据分析师,对业务一窍不通,也没有意识去了解业务,停留在自己的一亩三分地。遇到问题之后,永远想的是先找别人的原因,是输入方没把需求说清楚、是别的组没配合他们、是整个流程不规范,各式各样的理由都有。
这种行为本质是让客户迁就他,而不是他去为客户解决问题。好的数据分析师会在与客户的交流中,搞清楚该客户的需求,遇到问题先进行自测,再和客户确认,并根据问题提出自己的解决方案。
⑤具备项目经理和产品经理的能力
随着数据分析的工作深入,往往涉及面广、流程复杂,经常以项目的形式开展。从业人员要具备项目经理的能力,能够从项目可行性分析、项目组织、项目计划、项目进展跟踪、风险管控、项目验收各个阶段深度参与;也需要具备产品经理的能力,能够准确将用户需求转化为产品需求,推动产品开发落地。
(3)提升大数据分析能力的途径
第一阶段:搜集碎片化知识。
刚刚接触大数据,什么都觉得新鲜,很容易“乱花渐欲迷人眼”,这个阶段讲究的就是“多”。信息收集得越多越好。
可以通过各种途径搜集信息,包括不限于文章、视频、直播间等等,反正大数据时代,你只要搜一个知识点,很快会给你推送更多相关知识。如果条件允许,也可以和专业人士交流。
第二阶段:建立体系化的知识架构。搜集了一堆碎片化信息后,搭建知识架构是最耗费时间精力的。需要自行整理知识点,搭建基础框架,有针对性地再去搜集相应知识。
这个阶段如果逻辑思维强、学习能力强、精力允许,可以自学;也可以报班。不过有一点需要注意,报班不是万能的,老师的知识+自己的思考,才能定制最适合自己的知识架构。
第三阶段:专项提升能力
无论是IT技术、数据分析思维、还是项目管理思维,都是熟能生巧,一定要多动手多练习。
特别是技术类的能力提升,比如Excel、SQL、Python,在没有实操机会的情况下自学难度太大,建议该报班报班,该买书买书。帮助快速搭建体系知识。
无论你是刚入职场、还是想转型、亦或是陷入瓶颈,要想在这个领域职业生涯更长些,都建议多了解、多思考,建立系统的知识架构后再专项突破。感到迷茫的小伙伴,可以听听下面的直播课,数据分析大咖为你答疑解惑。
总结:
1.从国家的重视程度和行业的需求程度看,大数据将仍然是未来很长一段时间的热门板块。
2.大数据就业覆盖面广,无论技术还是业务领域都可以深耕。
3.未来对大数据从业人员的门槛也会越来越高。个人要提升转变思维、充实能力,选择自己合适的赛道深耕,并逐渐成为行业需要的复合型人才。
我会持续分享数据分析知识、职场tips,麻烦看到这里的小伙伴点赞关注,职场路上我们一起进步!
二、大数据分析师就业和发展前景?
大数据分析师的就业和发展前景非常好。
大数据分析师是比较新兴的行业,虽然概念在中国有10年左右了,但真正开始做也就是这几年,现在主要是大公司在做,就业前景还不错,现在这方面的专业人才比较欠缺。
三、大数据分析原理?
把隐藏在一些看是杂乱无章的数据背后的信息提炼出来,总结出所研究对象的内在规律
四、bms大数据分析?
bms即电池管理系统,是电池与用户之间的纽带,主要对象是二次电池。
bms主要就是为了能够提高电池的利用率,防止电池出现过度充电和过度放电,可用于电动汽车,电瓶车,机器人,无人机等。
此外,bms还是电脑音乐游戏文件通用的一种存储格式和新一代的电信业务管理系统名。
bms可用于电动汽车,水下机器人等。
一般而言bms要实现以下几个功能:
(1)准确估测SOC:
准确估测动力电池组的荷电状态 (State of Charge,即SOC),即电池剩余电量;
保证SOC维持在合理的范围内,防止由于过充电或过放电对电池造成损伤,并随时显示混合动力汽车储能电池的剩余能量,即储能电池的荷电状态。
(2)动态监测:
在电池充放电过程中,实时采集电动汽车蓄电池组中的每块电池的端电压和温度、充放电电流及电池包总电压,防止电池发生过充电或过放电现象。
同时能够及时给出电池状况,挑选出有问题的电池,保持整组电池运行的可靠性和高效性,使剩余电量估计模型的实现成为可能。
除此以外,还要建立每块电池的使用历史档案,为进一步优化和开发新型电、充电器、电动机等提供资料,为离线分析系统故障提供依据。
电池充放电的过程通常会采用精度更高、稳定性更好的电流传感器来进行实时检测,一般电流根据BMS的前端电流大小不同,来选择相应的传感器量程进行接近。
以400A为例,通常采用开环原理,国内外的厂家均采用可以耐低温、高温、强震的JCE400-ASS电流传感器,选择传感器时需要满足精度高,响应时间快的特点
(3)电池间的均衡:
即为单体电池均衡充电,使电池组中各个电池都达到均衡一致的状态。
均衡技术是目前世界正在致力研究与开发的一项电池能量管理系统的关键技术。
五、大数据分析特点?
1、海量数据:大数据分析特点是处理海量数据,即处理超过传统计算机能够高效处理的数量级的数据。
2、多维度数据:大数据分析特点之二是处理多维度的数据,即大数据不仅仅包含数据的结构,还包括其他类型的数据,如文本,图像和视频等。
3、实时性:大数据分析特点之三是实时性,即大数据分析需要根据实时的数据进行分析,以满足实时的业务需求。
4、高可靠性:大数据分析特点之四是高可靠性,即大数据分析系统需要能够确保数据的完整性和准确性,以满足业务需求。
六、大数据分析发展
标题:大数据分析的发展历程
大数据分析作为一个重要的领域,其发展历程可以追溯到20世纪60年代,随着计算机技术和数据科学的不断发展,大数据分析技术也在不断演进和完善。下面将简要介绍大数据分析的发展历程及其当前的主要应用领域。 **初期探索阶段(20世纪60年代-70年代):** 这一阶段主要是对大数据进行简单的统计分析,如描述性统计、数据挖掘等。这一阶段的数据处理工具主要是基于计算机的统计分析软件,如SPSS、SAS等。 **成熟阶段(20世纪80年代-90年代):** 随着数据量的不断增加和数据处理技术的进步,大数据分析技术逐渐成熟。这一阶段出现了许多数据处理工具和算法,如Hadoop、Spark等。这些工具和算法使得大规模数据处理变得更加高效和可靠。 **当前阶段(21世纪):** 当前,大数据分析已经成为了许多企业和机构的核心竞争力之一。在各个领域,如金融、医疗、社交网络等,大数据分析技术都在发挥着重要的作用。此外,人工智能和机器学习等技术的兴起,也使得大数据分析得到了更加广泛的应用和关注。 在各个行业,大数据分析已经产生了巨大的影响。在金融领域,通过大数据分析可以对客户行为进行分析,提供更加精准的营销和服务;在医疗领域,大数据分析可以用于疾病预测、医疗资源优化等方面;在社交网络领域,大数据分析可以帮助企业更好地了解用户需求、优化产品和服务。** 综上所述,大数据分析已经成为了当前重要的研究领域和应用方向。它已经对各行各业产生了深远的影响,并在未来有望成为推动社会进步的重要力量。七、大数据分析 发展
--- title: 大数据分析的发展 --- 随着大数据技术的不断成熟和应用场景的不断扩展,大数据分析领域正在经历着飞速的发展。以下将就大数据分析的发展趋势、挑战和机遇进行深入探讨。 **一、大数据分析的发展趋势** 1. **数据量增长**:随着物联网、移动互联网、社交网络等数据源的不断涌现,大数据的数据量正在以惊人的速度增长。如何有效地存储和管理这些数据,成为大数据分析的重要课题。 2. **数据处理速度提升**:随着计算能力的不断提升,大数据的处理速度也在不断提高。实时分析、实时决策的需求越来越强烈,如何提升数据处理速度,成为大数据分析的重要研究方向。 3. **数据挖掘和机器学习技术的应用**:数据挖掘和机器学习技术正在被广泛应用于大数据分析中。通过这些技术,我们可以更好地发现数据中的规律和模式,提高决策的准确性和效率。 **二、大数据分析面临的挑战** 1. **数据质量问题**:大数据中存在许多噪声数据和异常数据,如何有效地清洗和处理这些数据,是大数据分析面临的重要挑战。 2. **安全和隐私保护问题**:随着大数据应用的不断深入,个人隐私和商业机密泄露的风险也在不断增加。如何保障大数据的安全和隐私,成为大数据分析必须面对的问题。 3. **人才短缺问题**:大数据分析需要具备多学科知识,包括统计学、计算机科学、数学等。目前,大数据分析人才短缺问题严重,如何培养和吸引更多的大数据分析人才,是大数据分析面临的挑战之一。 **三、大数据分析的机遇** 1. **商业智能和决策支持**:通过大数据分析,企业可以获得更准确的市场分析和消费者行为洞察,从而制定更有效的商业策略,提高市场竞争力。 2. **创新业务模式和产品**:通过大数据分析,企业可以发现新的商业模式和产品机会,创新业务模式和产品,满足消费者不断变化的需求。 3. **社会公共服务优化**:通过大数据分析,政府可以更好地了解社会需求和问题,优化公共资源配置,提高社会治理效率和服务质量。 总的来说,大数据分析正在经历着飞速的发展,面临着诸多挑战和机遇。作为数据分析从业者,我们需要不断学习和掌握新的技术和方法,提高自己的专业素养和能力,以应对大数据时代的挑战和机遇。八、大数据分析中,有哪些常见的大数据分析模型?
无论是产品经理、运营、还是数据分析师在日常工作中, 都需要构建一个完整的指标体系, 但由于经验或者对业务的熟悉程度, 互联网人经常会遇到下面的问题:
1)指标变成满天星:没有重点、没有思路,等指标构建完成了也只是看到了一组数据,各有用处,却无法形成合力,最终不仅浪费了开发人力,也无益于业务推动;
2)指标空洞不落地:需求中没有几个具体的指标,需求空洞,无法落地。
正是上面的原因,产品经理, 运营和数据分析师与数据开发的矛盾不断的激化,所以一个完整的搭建数据指标体系框架和方法是非常重要的。在此,为大家推荐一种实用的 AARRR 分析模型。
为了便于理解, 举最近的很火的《隐秘的角落》, 分享一下如何搭建指标体系,让万物都可以被分析:
二、什么是AARRR
AARRR是Acquisition、Activation、Retention、Revenue、Refer这个五个单词的缩写,分别对应用户生命周期中的5个重要环节。
- A拉新:通过各种推广渠道,以各种方式获取目标用户,并对各种营销渠道的效果评估,不断优化投入策略,降低获客成本。利用这个模块可以很好帮助市场推广部门比较各个渠道的拉新效果,评估新用户的用户质量。
- A活跃:活跃用户指真正开始使用了产品提供的价值,我们需要掌握用户的行为数据,监控产品健康程度。这个模块主要反映用户进入产品的行为表现,是产品体验的核心所在。
- R留存:衡量用户粘性和质量的指标。
- R转化(变现):主要用来衡量产品商业价值。
- R传播:衡量用户自传播程度和口碑情况
三、AARRR在指标体系中的应用
如果我们利用AARRR 框架去构建可以判断《隐秘的角落》的是否受欢迎:
1. 拉新
我们需要去评估现在这部剧在每一个投放的渠道拉来的新用户情况是否有达到预期, 因为这部剧最开始的用户进来的都是新用户, 所以前期的新用户的触达情况是后期是否这部剧火爆的关键所在。
监控新用户的增长曲线, 有助于我们及时发现问题, 利用用户反馈等改进。
2. 激活
当这部剧的新用户来的时候, 很关键的是这些用户有没有在以后的时间看这部剧, 看的时间是怎么样的, 看的频率是怎么样, 每次看这部剧的时候是不是都经常会从头看到完等等, 这些是最直接说明这部剧受到用户的喜爱程度的
3. 留存
留存的定义如下:
- 次日留存:统计日新增用户次日仍然使用产品的用户数量占总新增用户数量的比例;
- 7天留存:统计日新增用户第七天仍然使用产品的用户数量占总新增用户数量的比例;
- 30天留存:统计日新增用户第七天仍然使用产品的用户数量占总新增用户数量的比例
看了这部剧的用户, 还会来看的用户一定逃不出下面的模型.
这部剧高能开篇,片头惊悚的开始。可以说开篇即高能,吊足了观众胃口, 秦昊饰演的张东升,和岳父岳母一起去爬山,到了山顶,前几秒还在调整相机,微笑着给岳父岳母摆姿势准备拍照,下一秒就将岳父岳母推下悬崖,。
片头的悬疑给了用户很强的刺激作用, 也就是上面的"酬赏", 让用户会想着去看下面发生了什么, 于是就是上面的"投入", 不断投入, 也就提升了留存
4. 付费变现
剧的收入应该包括点播(提前看结局购买的特权费用), 流量变现收入(广告), 这个收入真心不了解, 应该还有很多其他方面的收入, 从数据上我们可以将从总收入和人均收入和成本去刻画整体的剧的利润情况。
5. 自传播
这部剧的火爆, 除了本身的的情节引人入胜以外, 自传播也贡献了很大的原因, 当"一起去爬山吧" 这种在各大社交媒体上疯传时, 传播带来的增长就需要用数据去科学的衡量:
如果希望掌握更多数据分析的万能模型,学会行业头部大厂的数据分析套路,欢迎参与知乎知学堂与合作方联合推出的「京东互联网数据分析实战训练营」,接受大厂分析师一对一辅导、踏上面试直通车。训练营限时体验价 0.1 元,不容错过:
--
文章内容来自公众号:Data Science数据科学之美,已获作者授权。转载请联系原作者。
九、大数据分析中,有哪些常见的大数据分析模型?
常见数据分析模型有哪些呢?
1、行为事件分析:行为事件分析法具有强大的筛选、分组和聚合能力,逻辑清晰且使用简单,已被广泛应用。
2、漏斗分析模型:漏斗分析是一套流程分析,它能够科学反映用户行为状态以及从起点到终点各阶段用户转化率情况的重要分析模型。
3、留存分析模型留存分析是一种用来分析用户参与情况/活跃程度的分析模型,考察进行初始化行为的用户中,有多少人会进行后续行为。这是用来衡量产品对用户价值高低的重要方法。
4、分布分析模型分布分析是用户在特定指标下的频次、总额等的归类展现。
5、点击分析模型即应用一种特殊亮度的颜色形式,显示页面或页面组区域中不同元素点点击密度的图标。
6、用户行为路径分析模型用户路径分析,顾名思义,用户在APP或网站中的访问行为路径。为了衡量网站优化的效果或营销推广的效果,以及了解用户行为偏好,时常要对访问路径的转换数据进行分析。
7、用户分群分析模型用户分群即用户信息标签化,通过用户的历史行为路径、行为特征、偏好等属性,将具有相同属性的用户划分为一个群体,并进行后续分析。
8、属性分析模型根据用户自身属性对用户进行分类与统计分析,比如查看用户数量在注册时间上的变化趋势、省份等分布情况。
十、大数据分析和大数据应用区别?
(1)概念上的区别:
大数据分析是指对大量数据进行统计分析,以挖掘出数据中的有用信息,并研究其中的相互关系;而大数据应用是指利用大数据技术来改善企业的管理和决策,以期实现企业的持续发展和提高竞争力。
(2)应用场景上的区别:
大数据分析主要针对数据进行深度挖掘,以便更好地了解数据,以此改善企业的管理决策;而大数据应用则是将挖掘出来的数据用于实际应用,在企业管理和决策中产生实际的影响。